
unclassified
ECUnITY CLASSIFICATION OF THIS PAGE (atn, D ota Entered)

REPORT DOCUMENTATION PAGE READ CMSTRUINOS, BlEFORE COMPLETING FORM
CI I. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMGER

NW7-LIS-88-31-01 i
(V) 4. TITLE (and Subtlele) S. TYPE Of REPORT I PERIOD COVERED

0 Semiannual Technical Report No. 1 Technical, Interim"VLSI Architectures & CAD" PERFORMING ORG. REPORT NUMER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(I)

Northwest Laboratory for Integrated Systems N00014-88-K-0453

S. PRFORMING ORGANIZATION NAME AND ADORESS t0. PROORAM E-gMENT. PROJECT. TASK
Northwest Laboratory for Integrated Systems AREA&WORIC UNIT NUMUERS
University of Washington, Dept. of Computer
Seattle, WA 98195 Science, FR-35

i1. CONTROLLING OFFICE NAMM AND ADDRESS 12. REPORT DATE

DARPA-ISTO November, 1988
1400 Wilson Boulevard lt. NUMBEROF PAGES
Arlington, VA 22209 31 pages

14. MONITORING AGENCY NAME & ADDRES(II diffeoent Ire. Controllind Office) IS. SECURITY CLASS. (of this epot)
Office of Naval Research - ONR
Information Systems Program - Code 1513: CAF unclassified
800 North Quincy Street Ise. OECLASSIICATION/DOWNGRADING
Arlington, VA 22217 SCHEDULE

'6. DISTRIBUTION STATEMENT (of thie R port)

Distribution of this report is unlimited. DT IC
SELECTEm

I7. DISTRIBUTION STATEMENT (of the abstrt en tered in Block 20, It diffrnt frogn R.t

Il. SUPPLEMENTARY NOTES

lS. KEY WORDS (Cantm revetee lde It neceeOM And Identlip by block n"i mb)

NW LIS, VLSI, CMOS, APEX, Gemini, Wirelisp, Network C, CFL, RNL,
parallelism, simulation

20. ABSTRACT (Contim a"rverse side 11 neceeey idt Identitp bp blok mr)

This document reports on the research activities of the Northwest Laboratory
for Integrated Systems, for the period of April 12, 1988, to November 14, 1988,
under the sponsorship of the Defense Advanced Research Projects Agency and
the Office of Naval Research, under contract number N00014-88-K-0453.

nn 01 1 c NDITIOI oP I NOV so is OSOLETE

u~F rOPF

NOGTIIWMfT LII
(LABORATORY FOR INTEGRATED SYSTEMS)

Semiannual Technical Report No. 1
"VLSI Architectures & CAD"

University of Washington

November 14, 1988
TR #88-31-01

t .:

Reporting Period: April 12, 1988 - November 14, 1988

Principal investigator: Lawrence Snyder

Sponsored by:
Defense Advanced Research Projects Agency (DoD)

Issued by Office of Naval Research
Under Contract #N00014-88-K-0453

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency of the U.S. Government.

Q O 09,

Contents

1 Overview of Activities 2

2 APEX: An Architecture for Drawing Parametric Curves

and Surfaces 3

3 Wirelisp: Schematics with Parentheses 4

4 Investigations Into Circuit Parallelism 4

5 VLSI Design Tools, Release 3.2 5

6 Progress on Fuzzy CAM Circuit Designs 7

Appendices:

Combining Event and Data-Flow Graphs in Behavioral Synthesis

GeminiII: A Second Generation Layout Validation Program

The Influence of On-Chip Parallelism in the Performance of Event-
Based Parallel Simulation

*TIC-

t

T 1

r4

/

1 Overview of Activities

Current research in the LIS is focused in several different areas. In the area of circuit
specification is the development of Wirelisp - a dialect of lisp that facilitates the
specification of circuit structure. A graphical frontend for Wirelisp allows the mixing
of symbols representing circuit elements and lisp expressions.

Another area of continuing interest is the parallelism of CMOS circuits and the im-
plications this parallelism has for simulation. The work has taken two forms. First,
empirical studies have continued to provide insight into the potential parallelism of
circuits, and to explain why designers feel that their circuits are more parallel than
earlier measurements show. Secondly, we have begun to formally model different sim-
ulation strategies so that a comparison of the strategies can be made independent of
the simulation implementation.

Current research is also being applied to the area of behavioral synthesis. A single
representation is being sought that will describe both internal behavior (data-flow
and operations) and interface behavior (signaling conventions and their timing con-
straints). A new unified behavior graph is being proposed that is concise and allows
straightforward mapping to hardware (seAppendbk 1)." .-

During the last six months several major design tools have been completed. They are
being used extensively within the LIS and recently have been offered to the research
community through the LIS distribution of VLSI design tools. These tools include ,
Network C and Gemini, as well as CFL and WIN. -...

Network C is a multilevel simulation system that supports event-driven modeling at
the functional and gate levels as well as continuous analog modeling. The event driven
capability has been used with some success in the design of the APEX II chip; the
analog capability has been used more recently in the design of the fuzzy CAM chip.

Gemini is a circuit comparison program that is used to compare netlists. Recently
it has been modified to make it faster, enable it to isolate errors better and extend
its domain of application. This revised version has been used extensively in the
verification of the APEX I chip.

Several systems are now available for the development of design generators. One
system, known as CFL (for Coordinate Free LAP), is a library of C routines for the

assembly of layouts from leaf cells. Another system, known as WIN (for Washington
Intermediate Notation), is a special purpose language which allows the parametric
description of both geometric and electrical network information about circuit fami-
lies.

2

2 APEX: An Architecture for Drawing Parametric
Curves and Surfaces

(Tony DeRose, Mary Bailey, Bill Barnard, Robert Cypher, Carl Ebeling, Smaragda
Konstantinidou, Larry McMurchie, Bill Yost)

APEX is an architecture that facilitates efficient drawing of curves and surfaces from
sets of control points (see Appendix B, of LIS Semiannual TR, November, 1987). Two
CMOS chips have been designed for implementing this architecture.

APEX I employs multiple processing elements in a triangular data-flow architecture.
The chip contains about 65,000 transistors and was fabricated in an 84-pin frame
using a 2-micron pwell process. We predict a clock rate of about 10Mhz. The design
was extensively simulated using RNL and the layout validated using Gemini. Chips
were submitted for fabrication in March, 1988 and were returned October, 1988.
Testing of these chips is currently underway.

APEX II performs the same computation in a more flexible way, permitting the gener-
ation of a wider family of curve types of higher degree at the cost of lower performance.
APEX II contains approximately 60,000 devices set in an 84-pin frame. It was fab-
ricated using MOSIS' two-micron pwel process. Testing has been completed. All 6
major modules on the chip were tested individually and exhibited partial function-
ality. Three modules (two single-ported RAMs and a ROM) outputted data values
with the wrong sense. Another module, a dual-ported RAM, gave inconsistent results
under test; close examination of transistor ratios revealed a sensitivity of the design
to process variation.

Problems with the RAMs pointed to weaknesses in the simulation strategy we em-
ployed. Our methodology consisted of using RNL to simulate a single module at a
switch level while the remaining modules were described functionally using the Net-
work C simulation system. In actual practice this technique was implemented using
a UNIX fork of an RNL process from a Network C model. The technique worked
very well for most modules on the chip and helped us isolate several problems. Un-
fortunately the RAMs and ROM could not be simulated with RNL - we had to rely
on the functional models as adequately describing those circuits. Unfortunately the
layouts diverged from the specification used to construct the functional models and
produced the discrepancy in the sense of the outputs.

We have recently employed COSMOS with considerable success for the switch-level
simulation of the modules in APEX II. By adjusting transistor strengths and direc-
tionality, we have been able to simulate all the modules in APEX II with COSMOS.

3

We have implemented the same UNIX forking scheme to simulate individual modules
with COSMOS while the rest of the chip was being functionally simulated in Network
C. All of the RAM/ROM problems were found using this strategy.

These problems were corrected and a successful switch-level simulation of the entire
chip performed with COSMOS. The modified design is currently being fabricated.

3 Wirelisp: Schematics with Parentheses

(Carl Ebeling and Zhanbing Wu)

Wirelisp is a language used to describe the structure of a circuit. The structure
can be described both graphically and procedurally where lisp expressions may be
included in circuit drawings and circuit drawings may be included in lisp expressions.
A number of features such as structured signals, iterators and optional parameters
make the language very expressive. We have completed the first version of a Wirelisp
environment. This includes a graphical programming interface for drawing Wirelisp
programs, a backend analyzer which converts these drawings into Wirelisp, and a
Wirelisp interpreter written in T.

We are currently defining extensions to Wirelisp to be implemented as user-defined
functions. These will allow behavioral descriptions to be referenced within the struc-
tural description and allow physical information to be included as a means of driving
a backend chip assembler. Behavioral descriptions are represented as modules for
which the input-output behavior is specified explicitly, for example using logic equa-
tions or finite state machines. These modules reference both a behavioral description
and a method by which the structure implementing that behavior can be generated.
This implementation will vary depending on the particular output desired. For ex-
ample, the implementation may be a functional model for COSMOS or Network C,
a multi-level circuit generated by the MIS tools or a PLA. Our goal is to provide a
simple framework in which the designer can specify and evaluate a system at a level
appropriate to the level of detail required.

4 Investigations Into Circuit Parallelism

(Mary Bailey, Larry Snyder)

We have continued to focus on the potential parallelism of CMOS VLSI circuits, and

4

4-F

the parallelism available for exploitation in discrete, event-driven circuit simulation.
The work has taken two forms. First, empirical studies have continued to provide
insight into the potential parallelism of circuits, and to explain why designers feel
that their circuits are more parallel than earlier measurements show. Secondly, we
have begun to formally model different simulation strategies so that a comparison of
the strategies can be made independent of the simulation implementation.

In Appendix II of the April '88 LIS Semiannual TR, we presented two metrics for
measuring the parallelism of CMOS VLSI circuits - the Event metric and the Queue
metric. We also reported measurements of several circuits using the Event metric.
We have continued measuring the parallelism of circuits using the Event metric, and
have also measured the parallelism of these circuits using the Queue metric. The
parallelism found using the Queue metric was much higher than that found using the
Event metric. In some cases it was an order of magnitude higher! Appendix 3 of this
report contains a discussion of the two metrics and a more complete comparison of
these results.

In addition to considering the Queue metric, we have formulated a model for com-
paring the potential speedup of parallel simulators with different timing strategies.
We have considered unit-delay, fixed-delay, and variable-delay synchronous strate-
gies, and conservative asynchronous strategies. We found that as the timebase for
variable-delay synchronous algorithms increases, the parallelism may increase, but
never decreases. We also found that unit-delay provides as much parallelism as any
of the synchronous algorithms, and that the conservative asynchronous algorithm
sometimes provides more speedup than the unit-delay synchronous algorithm.

5 VLSI Design Tools, Release 3.2

We have recently begun distributing Release 3.2 of the LIS design system. This
system contains tools written at the University of Washington as well as tools written
at various other sites, including UC Berkeley, CMU and MIT. Major features of this
system are described below.

Network C
(Bill Beckett)

Network C (nc) is a multilevel simulation system designed for constructing and sim-
ulating models of VLSI circuits and systems. The input language, a superset of C,
supports a range of modeling capabilities including solution of Kirchoff equations at
the analog level and discrete event functional simulation at the system level (De-

5

..9V . .

"" -.==--ii l mmiini Rilli I I

tails of nc's algorithms as well as experimental results have been described in LIS
Semiannual TR's from March 1986 through April 1988).

Gemini
(Carl Ebeling)

Gemini is a circuit comparison program that is used to compare extru.cted circuit
layout with a specification. Some recent extensions (See Appendix 2) make it faster,
enable it to isolate errors better, and extend its domain of application. Gemini's al-
gorithm is separated into global labeling and local matching phases. Gemini dynami-
cally switches between the two depending on the amount of local structure contained
in the circuit, taking advantage of the speed of the local matching algorithm when
possible, and relying on the power of the more general algorithm when the simple al-
gorithm fails. This blending of algorithms also allows differences between two circuits
to be better contained so that defects can be pinpointed.

Ohmics
(Wayne Winder)

Ohmics checks CMOS designs for the adequacy of ohmic contacts. The output of
the circuit extractor Me'tra is analyzed to determine the shortest path from each
transistor to an ohmic contact of the correct type. The path is through p-well or
p-substrate for n-channel devices and p-ohmic contacts, and though n-substrate or
n-well for p-channel devices and n-ohmic contacts. Ohmics also determines that the
ohmic contacts are electrically connected to the appropriate rail.

WIN
(Wayne Winder and Rudolf Nottrott)

WIN is a specialized circuit design language for assembling layouts and netlists (see
Appendix A, LIS Semiannual TR, November, 1987).

CFL
(Bill Beckett)

CFL is a library of routines that allows parametrized layouts to be assembled within
C programs (see Appendix I, LIS Semiannual TR March, 1986).

Xll support
(Warren Jessop)

We recently completed some Magic drivers for X Version 11. They are also available
apart from the distribution through anonymous ftp on vlsi.cs.washington.edu. The
compressed tar file is pub/magicll.tar.Z.

6

9A
wwmm.,

Portability considerations
(Warren Jessop)

The entire tools package now runs on 4 different hosts - SUN 3, DEC VAX (running
ULTRIX), IBM RT (running Berkeley UNIX 4.3), and SEQUENT. As distributed,
the tools package consists only of sources. "Make" procedures allow executables to
be made for each of the target machines.

6 Progress on Fuzzy CAM Circuit Designs

(Bill Barnard)

Work has continued on content-addressable memories which match fuzzy or partially
known data. Given a target input vector and a list of previously stored data vectors,
these circuits return the minimum Hamming distance data vector in a single clock
cycle. The additional circuitry for the fuzzy recall operation requires an additional
60% in area over a standard 4-transistor dynamic memory cell. We have chosen to
call these circuits "fuzzy CAMs".

Previously, a 16 by 48 instance (16 vectors, 48 bits each) of a fuzzy CAM was fabri-
cated through MOSIS. This fuzzy CAM was constructed using the layout assembly
package CFL. The design was partially simulated with RNL (the analog nature of the
circuit prevented a full RNL simulation) and partially simulated with SPICE (the
full circuit being much too large to simulate completely). This chip was tested last
summer, and was found to be only partially functional due to a design error in the
dynamic memory refresh mechanism.

Our problems in the first design were caused by our inability (at that time) to simulate
circuits with mixed analog and digital behavior. In a redesign effort, we have made
extensive use of the WIN system for writing module generators as well as the mixed
level simulation system Network C.

A fuzzy CAM layout/network generator was written using WIN notation. In addition
to providing a tighter coupling between the layout and network descriptions, this
recasting had the advantage of simplifying the generator code; source code for the
WIN generator was a factor of 4 shorter than the original CFL generator.

The netlist output of the WIN generator can be used as input to Network C (NC).
The goal is to simulate the fuzzy CAM in NC's mixed mode framework and thus avoid
the problems encountered in the first design, when some parts were simulated with
SPICE and others with RNL. The analog fuzzy CAM circuitry has been simulated

7

/ .---

.' = , i i i II l I- Il I l

at an analog level while the peripheral circuitry and RAM has been simultaneously
simulated at a gate level. So far this approach has been feasible only for relatively
small instances of the fuzzy CAM, since the tightly coupled nature of the circuit limits
the size that can be simulated.

In a parallel effort the entire fuzzy CAM has been simulated as a high-level functional
model. The goal here is to use this model as a testbed for applications on real and
semi-real data (e.g. digitized voice), and as a vehicle for developing tests of the
fabricated chip. The idea is to use this functional model to simulate the processing
of real data.

The Hamming distance evaluator part of the fuzzy CAM has been released for fab-
rication through MOSIS. Next steps include further simulation and eventual fabri-
cation of an instance of the full fuzzy CAM design, further simulation of the high
level functional model with real data, and evaluation of the new MOSIS double-poly
double-metal technology for use in the analog circuitry.

8i

9!

Scc A 8

APPENDIX I

COMBINING EVENT and DATA-FLOW GRAPHS

in BEHAVIORAL SYNTHESIS

Gaetano Borrieilo

Department of Computer Science, FR-35
University of Washington

Seattle, WA 98195

operations and the interface specification describesAbstract when inputs to the internal operators become available.

The behavioral specification of a digital circuit consists when outputs must be generated, and the signaling
of two parts: its internal behavior (data-flow and conventions to be used with the circuit's environment.
operations) and its interface behavior (signaling This approach permits the use of specialized synthesis
conventions and their timing constraints). Current methods for the two aspects of the circuit. Therefore, a
behavioral synthesis systems use data-flow graphs to unified graph representation of circuit behavior for
represent internal behavior. Recently, specialized general-purpose behavioral synthesis systems must
synthesis systems have been developed that use event include a clean interface between the two domains of
graphs to address the special nature of interface description and methods for synthesizing the hardware
behavior. Combining event and data-flow graphs into components that will interconnect the interface to the
a single unified representation has implications for how internals.
digital circuits are described and synthesized. This This paper is composed of six sections. The first is this
paper presents a new unified behavior graph and introduction to the issues to be considered. Section 2
outlines the new algorithms required to support summarizes related work and how it is inadequate for
automatic synthesis, The new descriptive conventions the task. Section 3 presents the model for a unified
are shown to be concise and to possess straightforward representation of internal and interface behavior.
mappings to hardware. The algorithm are Sections 4 and 5 describe the implications of this
demonstrated to be of practical complexity (0(n2), representation for specification methods and synthesis
where n is the number of interface events). A practical algorithms, respectively. Finally. section 6 concludes
example demonstrates how the representation is used the paper with some results and summary remarks.
and synthesis results from five examples show that the
synthesized circuitry is comparable to that achieved 2. Related Work
with other automatic methods or by experienced human The different nature of the two behavioral domains has
designers, led to different representations for each. Historically.

I. Introduction the emphasis has been on describing internal behavior.
Data-flow graphs are in use as input to many

The description of a digital circuit consists of two parts, behavioral synthesis tools that can generate complete
the internal and interface behaviors. Each part designs under some cost and performance constraints
emphasizes different aspects of circuit operation. (McFa88]. The nodes of these graphs represent
Internal behavior emphasizes data-flow and the combinational logic operations (e.g., comparisons and
operations that must be performed on the data. These arithmetic) or access to internal state (e.g., memories
consists ofcombinational and sequential logic elements and registers) while the arcs represent the data values
that transform and store data and maintain circuit being generated and used as inputs to the operations.
state. Interface behavior emphasizes the constraints Extensions for dealing with interface behavior have
imposed on the circuit by the environment in which it consisted of expressing constraints on the execution of a
operates. These are the signaling conventions used for sequence of data-flow operations within the confines of
communication (i.e., the events or changes in logic state a fully synchronous model of circuit behavior (Nest86!
on signal wires) and the timing constraints between However, this approach obscures data-flow with
these events, signaling operations. The description is difficult w

write due to the potentially high level of concurrency
In commonly used hardware description languages between the two domains.
(HDLs), these two aspects are mixed together. Actions
related to the interface signaling conventions are Work on self-timed circuits has lead to specification of
embedded in the data-flow description although the interface behavior using Petri nets. Synthesis methods
two domains have quite different primitive elements. A for asynchronous circuits have been developed based , n
more appropriate view of circuit description would this representation [Moln85, ChuB6l. The need :,
include primitive elements from both domains. The represent and synthesize circuits with interface timing
internal specification includes only data-flow constraints has led to the development of event graprn

I

(Borr87]. The nodes of these graphs correspond to similarly described with the difference that the
signaling events and the arcs specify how the events are enabling condition of the loop is re-tested after each
ordered and separated in time. This model freely mixes iteration to determine whether the loop must be
synchronous and asynchronous interface behavior, executed again. Arcs within an iterative segment must
However, only limited data-flow information is be distinguished as to whether they apply between
captured, namely, when input and output data values nodes of the same or consecutive iterations.must be valid on the interface signl wires.

4. implications for Specification

These two representations (i.e., data-flow and event
graphs) are specialized for expressing behavior and The implications of the unifiea representation for
synthesizing circuitry that fails within one or the other behavioral description languages seem to all be
domain. The USC Design Data Structure seeks to unify beneficial. One of these is that the representation
the representation of these different behavioral supports synchronous and asynchronous behavior
domains by using two hierarchical graphs that roughly equally well through the use of an asynchronous
correspond to the internal and interface behavior communicating processes model. Input data becomes
domains [Knapg5l. Bindings between elements in the available, is operated upon, and output data is made
two graphs are used to link the two types of available. The use of specialized description methods
information. Therefore, there must be a node in the for the interface and data-flow behavior is encouraged
data-flow graph for every event on the interface by the clean separation between the two portions of the
leading to large and complex graphs. A representation graph. For example, an HDL with send and receive
is needed with a more distinct separation between the constructs can be used to describe the data-flow and
two types of behavior and graph nodes and arcs with timing diagrams can be used to represent the interface
clear-cut mappings to hardware realizations. This is details [DeA88, BorrS8. The interconnections
the approach being taken at UC Berkeley with between the two are made between the data event
OE-graphs, a behavior graph with two node types nodes on the interface and the send and receive
(operations and events) in a bi-partite arrangement operation nodes in the data-flow. Of course, the basic
[Sequ88J. Data-flow is observed by looking only at block structure of the description must be identical in
operation nodes and events by looking only a event the two representations.
nodes. However, interface signaling is again An example of a two part circuit specification is shown
interspersed with data-flow operations. in Figure 1. The circuit described accepts a

3. A Unified Behavior Graph byte-stream of data and outputs it again with a
checksum byte appended to the end of the stream. An

The unified behavior graph presented in this paper is a HDL is used to describe the data-flow and two timing
hybrid of data-flow and events graphs that most closely diagrams describe the two parts of the circuit's
resembles event graphs [Borr88. The nodes correspond interface. From the diagrams one can see that input
to operations, either signal events or data-flow bytes arrive asynchronously while the output bytes are
operations; arcs correspond to either timing constraints generated synchronously. The unified graph
(min/max) or data dependencies. Nodes include corresponding to the description is shown in Figure 2.
min/max durations: propagation delay for data-flow Another advantage of the unified graph is that it
operations and rise and fall times for interface events, enables interface constraints to propagate to the
The interface portion of the graph consists primarily of internal behavior. Data-path synthesis can include
event nodes and timing constraint arcs. The data-flow this information in its scheduling and allocation
portion of the graph consists primarily of operation algorithms,
nodes and da:a dependency arcs.

Data arcs connect the interface behavior to the internal 5. Implications for Synthesis

behavior. A data dependency arc from an input event to In the unified representation, there is no restriction on
an operation signifies where and when the input data whether the data-flow circuitry is synchronous or
becomes available on the interface. A data arc from an asynchronous. This distinction can only be made for
operation to an output event signifies where and when interface signals and then propagated to the internals
output data is to be presented on the interface. Timing of the circuit by high-level requirements on the cost
constraint arms are propagated to the data-flow from and performance of the design. These requirements
the interface specification. will determine which implementation style leg.,

Conditional and iterative behavior is represented using synchronous, asynchronous, or self-timed) will be used.

the same solution adopted for event graphs (Borr88]. This is not the case with current behavioral synthesis

The graph is partitioned into segments and these are systems that can only generate fully synchronous

composed using a regular-expression syntax. Each designs [McFa88].

segment must include a distinguished node that serves Synthesis algorithms that run in polynomial time and
as the enabling condition for the segment. This can be a yield near optimal results exist for both data-flow and
combination of events on interface signals or conditions interface circuitry fMcFa88, Borr88]. The
on data. Both can be represented as nodes in the graph, representation presented in this paper permits the use
the former by annotating the events and the latter by a of these specialized synthesis methods on the two
comparison operation on the data. Iterations are portions of the circuit's behavioral specification. The

connections between the two parts must be shown to be of practical (O(w2)) complexity and circuitry has been
synthesizable with comparable complexity to current synthesized for five examples with good results (see
methods for the unified representation to be viable. Table 1) (Borr88]. Furthermore, the clean separation of

the interface from the internals permits the reuse of a
The two new problems are with the inputs and outputs data-flow specification with a different interface and
of the circuit. For input data that is to be transferred the reuse of an interface specification with a different
into the circuit, an interface event that signals the iteral data-flow.
presence of the data must be identified and possibly
used to control a latch. For output data, it must be
determined if the circuit can generate it in time to Circuit Size Performance
satisfy interface timing constraints. Both of these Counter same same
problems can be solved using the concept of FIFO control cell same same
input-ready/output-ready events and a graph algorithm Multibus Design Frame + 17% + 9%
that determines intervals of occurrence for interface 2-4 Phase Protocol Adapter -39% same
events. SPUR Cache Controller -11% same

An interval of occurrence can be determined for every
node in the graph by fixing the position of one node and Table I. Synthesis results for five examples including
then traversing the arcs of the graph. The arcs and the fully synchronous, fully asynchronous, and mixed
durations of the nodes will constrain the interval circuits. Size is measured in number of logic gates and
during which a node can occur relative to the fixed performance in maximum communication bandwidth.
node. The algorithm is similar to one used in layout References
compaction algorithms and is O(em), where e is the
number of edges and m is the number of maximum [Borr87] G. Borriello, R. Katz, Synthesis and
constraints (Burn86l. Typically, there is a small Optimization of Interface Transducer Logic,
number of maximum constraints and the algorithm can IEEE International Conference on CAD,
be assumed to be O(W) for each node requiring an November 1987.
input-ready event to be identified. This yields a lBorr88 G. Borriello, A New Interface Specification
worst-case complexity of O(WZ). Methodology and its Application to Transducer

The input-ready event is determined by fixing the Synthesis, Technical Report UCB/CSDi-8o430,
event at which the data becomes valid and finding California at Berkeley, May 1988.
another non-data input event that occurs after the data
event and before the data is deasserted. Alternatively, (Burn86] J. Burns, A. Newton, SPARCS: A New
an event that occurs a specific amount of time before Constraint-Based IC Symbolic Layout Spacer,
the data is asserted can be used (it can be delayed by the Proceedings of the Custom Integrated Circuits
appropriate amount). This input-ready event is paired Conference, 1986.
with the receive node at the beginning of a data-flow [Chu86] T. Chu, L. Glasser, Synthesis of Self-Timed
portion of the graph. The control for the data-flow Control Circuits from Graphs: An Example,
circuit can either generate a synchronous pulse from IEEE International Conference on Computer
the input-ready event or use it as a start signal for an Design, October 1986.
asynchronous computation. Figure 2 explains which [DeMi88] G. DeMicheli, D. Ku, Hercules - A System
events are selected for the example graph. for High-Level Synthesis, 25th Design

The output-ready event is generated by the data-flow Automation Conference, June 1988.

circuit and is used to enable the signaling events for the (Knap85] D. Knapp, A. Parker, A Data Structure for
output data (see Figure 2). The interval of occurrence VLSI Synthesis and Verification, Technical
algorithm is used to determine the range of time within Report CRi-85-19, Department of Electrical
which this event must be generated and still satisfy the Engineering-Systems, University of Southern
interface timing constraints. The output-ready event California, August 1985.
can either be an asynchronous completion signal or the (McFa88] M. McFarland, A. Parker, R. Camposano,
synchronous output of a finite state machine controller. Tutorial on High-Level Synthesis, 25th Design

Automation Conference, June 1988.
6. Conclusions [Moln85] C. Molnar, T. Fang, F. Rosenberger,

A unified representation for circuit behavior has been Synthesis of Delay-Insensitive Modules, 1985
presented and has been shown to have positive Chapel Hill Conference on VLSI, May 1985.
implications for behavioral specification and synthesis. [Nest86] J. Nestor, D. Thomas. Behavioral Synthesis
The two behavioral domains of a circuit are linked with Interfaces, IEEE International Conference
using simple conventions in its HDL description that on CAD, November 1986.
have direct mappings to hardware. The distinction [Sequ88 C. Sequin, personal communication, 1988.
between internal and interface behavior prevents
data-flow details from being obscured by interface
signaling considerations and interface circuitry can be
synthesized independently of the data-flow circuitry.
The effect on synthesis algorithms has been shown to be

? .. 3J0 4?C il" "- circuit CheckSu MGenerator;

R*a" 4 . "- inputs Reqln, DIn[0:7j Lastln; Clock;
~-fY outputs Ackin, ReqOut, DOutfO:71, LastOut;

~,I~u:j ~ *'/t-.dock Clack;
Latn int Byte(0:7, ChkSum[0:71;

I repeatbegin;
receive(Byte, Datain);
cobegin;

..,, send(Byte, DataOut);
ChkSum = Byte <op> ChkSum;

'-Sl0Ck 4 coend;
repeatend;

--ut.a: - so 76C'--r--" send(ChkSum, Chk);

- LastOut 3 - - end CheckSumGenerator;

Figure 1. A specification for a circuit that takes a byte stream input, generates a checksum byte, and
outputs the same stream with the checksum appended. The specification consists of three parts: a timing
diagram for the input interface, a timing diagram for the output interface, and an HDL program for the
data-flow portion. The input interface is asynchronous, the output interface is synchronous, and the
internal data-flow is unspecified. Note that the basic block structure of the diagrams is identical to that
of the program. The vertical lines in the diagrams separate it into segments and a regular expression is
formed by the horizontal blocks above the traces of the diagram (a Kleene star is used for an unspecified
number of iterations). The time line in the diagrams is for illustrative purposes only and is not part of the
specification. The dotted arcs in the two diagrams identify constraints between consecutive iterations of
the loop. The notation I @Clock in the second diagram is shorthand for a timing constraint that precisely
spaces the two events one cycle of Clock apart.

Loop Last lr

Joqin ioh7vior

DData-FowLastn 0 Z n i L&tUoIInerac
,0 0) Behavior

Figure 2. The graph representation of the example of.Figure 1. The dashed vertical line breaks the graph
into two parts cor-esponding to the basic blocks of the program and the seg~ments of" the diagrams. The
two horizontal lines break the graph into parts corresponding to each of" the two diagrasms and the HDL
program. Arcs in the interface behavior portions of" the graph are timing constraint arcs while those at
least partly within the internal behavior portion of the graph are data arcs. Each segment is enabled by
the first event on Reqin, the first segment is enabled if"Lastin is low when Reqin goes high and the second
if Laatln is high (these annotations are made in the timing diagrams). Reqin going high is used as theinput-ready event for the receive (it allows &r a 2Ons setup time) and is determined by using the
intervels of occurrence algorithm. The notation for the nodes is as follows: 0 implies a falling event. 1 is a
rising event, X is a don't care, I signifies that data is arted, and ? signifies that the wire is tre-stated.Nodes are grouped if they occur simultaneously (within some tolerance).

)APPENDIX 2

Geminill: A Second Generation Layout Validation Program

Carl Ebeling
Department of Computer Science

University of Washington

ABSTRACT

Gemini is a circuit comparison program that is widely used to compare circuit layout against
a specification. In this paper we describe recent extensions made to Gemini that make it faster,
enable it to isolate errors better, and extend its domain of application. This has been done by
changes to the labeling algorithm, extensions to the local matching algorithm, better handling of
symmetrical circuits and the accommodation of series-connected transistors. Geminill's algorithm
is separated into global labeling and local matching phases. Geminill dynamically switches between
the two depending on the amount of local structure contained in the circuit, taking advantage of the
speed of the local matching algorithm when possible and relying on the power of the more general
algorithm when the simple algorithm fails. This blending of algorithms also allows differences
between two circuits to be better contained so that defects can be pinpointed.

Introduction

One of the crucial steps in the design of VLSI circuits is that of determining whether the layout of
the circuit geometry corresponds to the specification of the circuit. This problem is often addressed
by simulating the circuit extracted from the layout. This method is both inefficient and ineffective.
Simulation requires many hours for large systems and still is not guaranteed to find all errors.
Moreover, subtle differences such as transistor sizing typically go undetected.

Gemini validates layout by comparing two circuits, the specification circuit and the circuit
extracted from the layout. Gemini determines whether the two circuits match exactly, and if not,
what the differences are. Gemini has been used to validate a wide range of chips, including the
HITECH, CHIPTEST and SLAP chips at CMU, and the CRISP microprocessor at Bell Labs. The
program is very fast, comparing circuits at the rate of about 300 transistors/second on a Sun-
3 workstation. Thus even very large chips with 100,000 transistors take only a few minutes to
compare.

The approach that Gemini takes is to treat the circuit comparison problem as an instance of
the graph isomorphism problem. The circuits are represented as graphs and a heuristic algorithm
based on node invariants is used to partition the graphs into groups of devices and nets which
have the same characteristics. The partitioning is refined until each device or net is in a separate
partition. At this point Gemini can match partitions between graphs to obtain the isomorphism
mapping of the elements of one circuit onto the elements of the other.

This basic partitioning algorithm does very well at determining whether the circuits are iden-

tical. When circuits are different, however, Gemini attempts to isolate the differences. This is in

'This research was supported by the Defense Advanced Research Projects Agency, ARPA Contract Number
MDA903-85-K-0072, and by NSF, Contract Number CCR-M8758 .

r;I

r4

general a difficult problem, since there are typically many different explanations for circuit differ-
ences. Gemini's approach is to match as many devices and nets as possible.

Gemini's graph matching algorithm is very powerful and efficient, achieving performance that is

almost linear in the size of the circuit in most cases. However, some problems with Gemini became.
apparent over time. First, for some fairly simple circuits, Gemini was very slow to converge, in spite
of 'obvious' structure in the circuits. This was especially apparent for highly symmetric circuits like
register files and data paths. Second, Gemini was often unable to pinpoint the differences between
circuits and offered the designer no help on how to proceed. Finally, Gemini did not allow series-
connected transistors to be interchanged. In CMOS circuits where almost every complementary
gate contains transistors in series, this became a serious drawback.

The improvements described in this paper address these problems. A new matching algorithm
has been incorporated that uses local structure information to match nodes in the two graphs.

Gemini uses this more efficient algorithm where possible, relying on the more general partitioning
algorithm only when necessary. Gemini dynamically switches between the two algorithms based on

the success of the weaker algorithm. A preprocessing step has also been added to allow the order

of series-connected transistors to be ignored by the isomorphism algorithm.

The Partitioning Algorithm

Gemini determines whether two graphs are isomorphic using a partitioning algorithm[, 2]. While
the graph isomorphism problem appears to be very difficult in general[4], partitioning algorithms
have been shown to be effective for a wide range of graph applications where pathological graphs
do not occur in practice. Digital circuits fall in this category.

Circuits are represented in Gemini as bipartite graphs as shown in Figure 1, with devices and

nets forming the two class of nodes. Devices are connected to nets through terminals which are
divided into different classes. For example, the source and drain of a transistor are in the same

terminal class since their connections can be interchanged without affecting the circuit. This very
general way of representing circuits has several advantages. First, the representation is compact,

using only O(N) space for a set of N completely connected devices instead of O(N 2) as required if

only devices are represented. Second, this representation makes it convenient for the partitioning
algorithm to alternate labeling the two clauses of nodes. Finally, this representation is technology

independent since it makes no assumptions about the devices or their interconnection. Gemini has
been used for MOS and bipolar circuits for both digital and analog applications.

The partitioning of a graph is done implicitly by assigning a label to each node in the graph.

This labeling is done using node invariants, which are properties that are maintained under an
isomorphism mapping. Gemini uses the device type as the invariant for device nodes and the

number of connections as the invariant for net nodes. An initial partitioning is done using these

invariants as labels. This partitioning is refined by relabeling each node based on the labels of its

neighbors, suitably modified by the terminal classes used to make the connections.
It is easy to show that if an isomorphism mapping exists between two graphs, then there is

also a mapping between the partitions that are created by this labeling procedure. Moreover, the

mapping can be easily derived from the labels. If all partitions contain a single node, then an

isomorphism mapping has been found. The goal therefore is to relabel the nodes of the graphs

until only singleton partitions remain.
Most circuits admit to this isomorphism algorithm and singleton partitions are in fact generated

2

Vdd

P P

IS

A d

d

Figure 1: A simple circuit and its graph representation. Devices are represented by squares and
nets by circles. There are two terminal classes, drain/source represented by d and gate represented
by g.

by repeated labeling. Symmetric circuits, for which many distinct isomorphism mappings are
possible, are an exception. Thus the partitioning algorithm cannot reduce the size of partitions
that contain equivalent nodes. When Gemini detects symmetry, it arbitrarily matches nodes in
corresponding partitions in the two circuits. Gemini's algorithm for doing this did not always
work, often making only very slow progress and sometimes failing completely. GeminilI makes use
of local matching as described in the next section to always make steady, if somewhat slow progress.

When a node is relabeled, all the information in the labels of neighboring nodes must be kept.
This requires either progressively larger labels which are time-consuming to compute, or a renor-
malizing of labels after each step which is also time-consuming. Gemini instead uses approximate
labels with values in the range [0...N - 1] with N = 212. Labels are then computed according to the
hash function: L+ = _i cLi where L+ is the new label, the Li's are the labels of neighboring nodes
and ci is a factor that depends on the terminal class through which the neighbor is connected. It
can be shown that with suitably chosen factors and initial labels, these approximate labels behave
like the full labels with high probability.

Unfortunately, for very large circuits and circuits with a large effective diameter, collisions did
in fact occur in Gemini resulting in non-singular partitions with differing nodes. These collisions
occur because labels cannot maintain all information over a long number of relabelings. When this
happened, Gemini was not able to reach any conclusion about the circuits. The labeling procedure
was modified in Geminill by assigning matching nodes new, unique labels as they are matched
instead of relying on the unique labels generated by the labeling algorithm. This, in connection
with the local matching algorithm, serves to minimize the loss of information in the approximate
labeling.

Local Matching

The strength of Gemini's graph isomorphism algorithm is that it does not rely solely on local
structure in the circuit to map the elements from one circuit to another. Many circuit comparison
algorithms start from known nets such as inputs and progress from there by straightforward deduc-
tion about which nodes must match. This local matching approach works very well where circuits

3

are locally structured. However, the kinds of large, regular circuits typically found in VLSI chips
do not admit to this type of algorithm.

Gemini, by contrast, uses labeling to combine the local information over a large area until

it finds nodes that must match. This algorithm can be inefficient, however, especially for large

symmetric circuits since many nodes must be relabeled many times before being labeled uniquely.

GeminiII takes advantage of the strengths of the two different approaches by adding a simple,.

local matching algorithm to the general partitioning algorithm, using whichever is appropriate at

each step of the matching process. The global partitioning algorithm is first used until some nodes

are found to match. At this point, Gemini focuses on the neighbors of each pair of matching nodes

and tries to match them based on strictly local information. This is done by partitioning just the

neighbor nodes according to their values. These partitions must match in just the same way as the
partitions of the graph itself and the nodes in singleton partitions can be immediately added to

the isomorphism mapping. This local matching continues until there are no unprocessed matching

nodes.
The two algorithms blend extremely well since they are cast in very similar terms. One examines

partitions in the entire graph while the other examines partitions in a very small neighborhood.

Thus most of the same data structures and procedures can be used for both algorithms. There is in

fact a range of alternatives for local matching. An intermediate algorithm matches all the nodes in

the local neighborhoods together instead of in each individual neighborhood. The performance of

these alternatives are similar, but matching over restricted neighborhoods isolates circuit differences

better.
The local matching algorithm does not discover anything that the global partitioning algorithm

does not discover. However, it is more efficient since the work of global relabeling is not done.

For most circuits over 95% of the labels can be found using local matching. However, the global

partitioning algorithm is essential to provide the local algorithm 'anchor' points from which to

start.

Isolating errors

The partitioning algorithm works extremely well when two circuits are the same, but it offers little

help if the two circuits are different. In this case, the labels in the two graphs diverge rapidly and

little useful information can be extracted. It is useful to think of one circuit " the standard and

differences between the circuits as defects in the second. A single defect such as a switched or

missing connection will cause all nodes within a distance D to be mislabeled after D relabelings.

Since most circuits have a small diameter (typically less than 10), the entire circuit will be labeled

differently after only a few relabelings. Gemini avoids this problem by matching all partitions after

each relabeling. This allows singleton partitions to be matched as soon as possible and also allows

non-matching partitions to be detected early and isolated so that differing labels do not propagate

into the rest of the circuit.
Local matching also has a very beneficial effect on pinpointing defects. Matching is propagated

without the global relabeling that causes large sections of the circuit to be mislabeled. This tends

to localize the area affected by defects, and it also gives the designer a way to find defects when

Gemini has trouble pinpointing them.
Gemini produces a node equivalence file as part of the matching process which can then be used

as input to tell Gemini which nodes to match a prioi. By starting out with matching nodes, the

4J.

local matching algorithm can propagate matches into that part of the graph which contains the
defect, narrowing down the area in which the problem occurs. Iterating this procedure typically
narrows down the area containing the defect until it is isolated.

Symmetric Circuits

The running time of the partitioning algorithm increases dramatically for highly symmetric cir-
cuits. In these cases Gemini must make sure that partitions do in fact contain equivalent nodes
before performing an arbitrary match. After every such match, Gemini continued with the labeling
algorithm to allow partitions to subdivide if necessary. Many times, of course, this labeling did not
accomplish anything.

Geminill uses the local matching algorithm to quickly determine the result of arbitrarily match-
ing two nodes in symmetric circuits. If no other nodes are affected, then no relabeling is required
and the matching procedure can continue. This improved handling of symmetric circuits has dra-
matically improved the running time of Geminill for symmetric circuits. For example, Gemini took
8 hours to compare one large circuit containing very fine-grained symmetry: GeminiII compares
these in less than 5 minutes.

Series Transistors

Gemini compares circuits based on strict topological structure alone. Thus Gemini will consider two
topologically different circuits different even if their functionality is the same. In the general case,
it is extremely difficult to determine whether two topologically different circuits are functionally
equivalent. However, series-connected transistors are a simple instance that is easy to recognize
and that is particularly common in CMOS circuits.

The NOR gate of Figure 1 illustrates the problem with series transistors. Clearly the func-
tionality of the circuit does not change if signals A and B are interchanged. However, the graph
structure is changed and Gemini would report such a switch as an error. In practice, we have found
that many designers want to know when such an interchange has been made since even though the
circuit function remains the same, its performance can be affected substantially. For example, the
size of transistors in a stack is typically increased towards the rail and late-changing signals are
connected near the output. However, there are many designers who choose to ignore these issues,
especially in CMOS designs where series transistors occur much more frequently than in NMOS.

The solution takes advantage of the fact that Gemini uses a general graph isomorphism al-
gorithm that is oblivious to the actual types of devices contained in the circuit. A set of series-
connected transistors, which we call a chain, can be thought of as a composite device that imple-
ments the AND switch function. That is, a chain comprising N transistors can be replaced with a
pseudo-device with two source/drain terminals and N gate terminals as shown in Figure 2. The gate
connections can now be permuted on this composite device without affecting the graph structure.

A pre-processing step that is part of the input procedure performs this graph reduction. As
composite chain devices are matched, Gemini checks the order of the transistors and prints warnings
if it differs in the two circuits. Isolating series transistors also serves to reduce the number of
isomorphism errors, which can be more easily pinpointed by GeminilL

51I

Vdd

N2q

d

GND

Figure 2: The replacement of series-connected transistors by a composite device.

Results

The graph in Figure 3 plots the running time for circuits of varying size and symmetry. The time
measured is CPU time including I/O time for a Sun-3/180 workstation with local disk and 16Mbytes
of memory. None of the circuits represented here suffered from substantial paging activity. We have
chosen cases from the two extremes with respect to symmetry to indicate a performance envelope
for all types of circuits.

For circuits with little or no symmetry, the running time is given by the equation T = 2.6(46) 1.9

where N is the number of transistors in the circuit. This is almost linear in the size of the circuit
and extrapolating to a circuit with 1,000,000 transistors yields a running time of less than one hour.

The presence of symmetry increases the running time of Geminiul substantially. However,
Geminill is able to compare symmetrical circuits with predictable running times, in contrast to the
original Gemini which often was unable to make a comparison or was very inefficient. The running
time for highly symmetrical circuits is given by the equation T = 3 (-&)'s. This almost quadratic
behavior is a result of the repeated scanning of partitions that Gemini performs when searching
for the nodes most likely to be equivalent. The user can reduce the symmetry of the circuit by
giving GeminilI a list of matching nodes such as inputs, outputs, and bus lines. However, large
chips that contain components such as memory with a high degree of symmetry, usually contain
interface circuitry that contains sufficient information to make the symmetry of the overall chip
negligible.

Table I indicates the ability of GeminiII to find different kinds of defects. The ability of Geminill
to pinpoint errors is enhanced by the use of the local matching algorithm. If the difference between
the two circuits is not substantial, then Geminiul typically pinpoints the error precisely. Sometimes,
however, Geminill will report nodes in error that are in fact correct. The usual procedure in this
case is to rerun GeminiII while indicating which of the reported nodes in fact match. This forces
Geminill to find an alternative 'explanation' for the error. Depending on the number of errors, the
user may have to repeat this procedure several times to find the location of the 'real' defect. In the
limit, the correct explanation can be generated by prematching all nodes except those in error. The
local matching algorithm allows one to approach this in effect by only prematching a few nodes in
the vicinity of the reported error. These anchors are used to propagate matches, reducing the area
in which errors ar reported.

6

1000 + Very low symmetry
x Very high symmetry

xx

100+ *

X' ""

x

10 + +.-"

1000 2000 5000 10000 20000 50000 100000

circuit Sizn (Transistors)

Figure 3: Geminifl performance over circuits of varying size and symmetry.

T

IX

Spurious Errors
Type of error CPU time reported
None 91 0
1 switched connection 116 0
Vdd/Gnd shorted 121 0
10 shorted connections 118 +5/-4
10 open connections 135 +2/-i
10 shorts, 10 opens 143 +10/-3
10 missing transistors 113 0
20 missing transistors 133 +3
100 missing transistors 181 +88
1000 missing transistors 450 +731

Table 1: Performance of GeminilI when locating defects of various types. The circuit is a 25,000
transistor microprocessor with about 1% symmetry. Spurious errors indicates the number of non-
defect nodes reported (+) and the number of defect nodes not reported (-).

The type of error that continues to be the most difficult to analyze is that of shorted and
switched connections. This type of defect affects many devices and nets unrelated to the cause of
the error making it very difficult to isolate the defect in spite of the improvements described here.
The better isolation of defects is the subject of continuing research.

Conclusion

Geminill is a very efficient program for validating circuit layout against an independent specifi-
cation. Geminill retains the same general partitioning algorithm as Gemini, but makes better
use of local matching to isolate errors and match symmetric circuits more efficiently. Collisions
in the labeling hash function have been effectively eliminated by randomizing labels as nodes are
matched. Finally, Geminill recognizes permutations of series-connected transistors to be equivalent
in function, increasing its utility for CMOS circuit designs.

References
(11 D. G. Corneil and C. C. Gotlieb. An algorithm for graph isomorphism. Journal of the ACM,

17:51-64, January 1970.

[2) D. G. Cornel and D. G. Kirkpatrick. A theoretical analysis of various heuristics for the graph
isomorphism problem. SIAM Journal of Computing, 9:281-297, May 1980.

[3] C. Ebeling and 0. Zajicek. Validating vlsi circuit layout by wirelist comparison. In Proceedings
of ICCAD, pages 172-173, 1983.

(4] R. C. Read and D. G. Cornel. The graph isomorphism disease. Journal of Graph Theory,
1:339-363, 1977.

8-

I9

4
APPENDIX 3

The Influence of On-Chip Parallelism in the

Performance of Event-Based Parallel Simulation *

Mary L. Bailey Lawrence Snyder

Department of Computer Science
University of Washington

Seattle, WA 98195
November 8, 1988

1 Introduction

Circuit simulation is a bottleneck in VLSI design, and parallel computation has often been
suggested as a means of speeding it up. But recent studies have shown very little parallelism
available for exploitation in parallel simulation in VLSI chips [BS88, SB87, Fra85]. For

example, in [BS88] the average parallelism, that is, the average number of nodes changing per
timestep, for a 27,000 transistor CMOS chip was 6.4! Thus an infinite number of processors

can only speed up this simulation by at most 6.4. This small amount of parallelism surprised

chip designers who felt that their chips had more parallelism than these numbers showed

and it challenged us to reconcile the apparent inconsistency. In this paper we:

Explain the discrepancy between the small amount of parallelism available for
exploitation in parallel simulation and the designer's perception that chips have

much parallelism.

We do this by considering two metrics for measuring parallelism: the event metric used to

measure the parallelism available for parallel simulation, and the queue metric which more

closely represents the designer's idea of chip parallelism.
For parallel simulation, a common method for exploiting parallel processors is to partition

the chip among multiple processors and execute the same algorithm on each portion of the

chip. Achieving good speedup depends on keeping all of the processors busy. For synchronous

algorithms, the event metric measures how busy the processors can be by computing the

number of events that can be executed in parallel at each timestep assuming an unlimited

"This research is supported by the Defense Advanced Research Projects Agency, ARPA Contract Number
MDA903-85-K-0072

, ,I ,.. i I I I II II I I I

number of processors and ignoring timesteps where no events occur. Thus, the event metric
provides an upper bound on the speedup of synchronous parallel simulation. In [BS88] we
used this metric to measure six chips, and found that the average parallelism ranged between
2.8 and 25, with the percentage of parallelism (the parallelism divided by the number of nodes
in the circuit) ranging from 0.04% to 2.9%.

While the event metric provides the potential speedup for parallel simulation, it is really
just averaging the number of node changes that complete simultaneously. But nodes do
not change instantaneously, they charge or discharge over time. The simulation event is
scheduled when the amount of charge in the node passes through a specific threshold. Thus,
in the event metric two nodes are changing in parallel if and only if they reach their final
values simultaneously.

Chip uesigners, however, consider two nodes to be changing in parallel if they are both in
the process of changing state, not just whether they simultaneously reach their thresholds.
Thus another metric is needed to capture this notion of parallelism. We use the queue metric
which measures the average length of the simulation queue. The nodes on the queue are
precisely those nodes that are in the process of changing state. Thus in the queue metric a
node will contribute to the parallelism during all of the timesteps in which it is changing, as
opposed to the event metric where it will contribute to the parallelism only at the timestep
when it reaches its final value. We have measured nine chips using the queue metric and
found that the parallelism ranges between 9.8 and 390, much larger values than have been
observed with the event metric!

In [BS88] we also considered the effect of varying the timestep on the event parallelism
measurements, and found that as the timestep increased, the parallelism also increased until
it reached an upper limit, the parallelism found in unit delay simulations. This ceiling effect
is due to the data dependencies in the chip - nodes that are dependent on a previous node
must wait for the previous node to change before they can change. This is precisely the
notion of unit delay; all nodes take one unit to change and all nodes affected by the changes
in one time unit are evaluated in the next time unit. For the queue metric, varying the
timestep has little effect on the resulting parallelism. However, the queue metric parallelism
is also limited by the unit-delay parallelism, since in the unit-delay model a node is only on
the queue for a single timstep. Thus as the timestep increases, the parallelism found using
both metrics actually converge to that found using a unit-delay algorithm!

Hence, the reason for the discrepancy between the earlier measurements and the designer's
perception is a difference in definition: whether a node contributes to the parallelism mea-
surement for only one timestep or for multiple timesteps. Not all the activity on the chip can
be effectively exploited using synchronous event-driven parallel simulation with fine-grained
timesteps. However, at the cost of less precise timing, the parallelism found with the event
metric rises and converges to the parallelism found using the queue metric.

2 Preliminaries

Now we present more formal definitions of the two metrics:

2

9t

Definition 1 The average parallelism reported by the event metric is the total number of
events divided by the number of timesteps in which at least one event occurred.

Definition 2 The average parallelism reported by the queue metric is the sum of the queue
lengths at each timestep in which there is at least one element in the queue divided by the
number of such timesteps. Note here that when there are no more events on the queue, the
simulation is finished.

We used the RNL linear-level simulator developed by Terman [Ter83] for all of the mea-
surements in this paper. It is similar to a switch-level simulator, but includes timing infor-
mation as a part of its output. The default timebase for RNL is O.lns. For the event metric
measurements using the default timebase, we made no modifications to RNL, but used an
output format which provides information on the events that RNL is processing. For the
queue metric measurements, we modified RNL so that at the beginning of each timestep it
printed out the size of its queue.

3 Circuit Parallelism

We have used the two metrics to measure the circuit parallelism on nine chips developed
at the University of Washington. For all of the circuits we used extracted circuits for the
simulations so that the actual topology of the circuits would be reflected in the measurements.
We first describe the circuits, and then discuss the parallelism results.

1. The Apex I chip is a graphics co-processor chip that generates a large class of spline
descriptions very quickly [DH871. Its architecture is based on a triangular compu-
tation that generates points on a curve in a data-flow fashion. For the parallelism
measurements, we initialized the triangle and used enough inputs to fill the pipeline
and generate the first output. We then took parallelism measurements on the next 10
data points, which consists of three numbers, one for each of the x, y, and z coordinates.

2. The IIR digital filter was designed by Hyong Lee [Lee85]. It includes a 16x 16 multiplier,
a 32-bit ripple adder, a 9-bit ripple counter, a 17 stage, 16-bit shift register, four 3 stage,
16-bit shift registers, and a PLA. Here we measured one macrocycle containing 401
microcycles.

3. The Quarter Horse is a 32-bit RISC microprocessor [HJK*851. It has 32 general purpose
dual-ported registers, two internal busses, an ALU, shifter, memory address register,
and a program counter structure with PLA control. In addition, it has an LSSD for
testing purposes. As our test data we used a single run of a character load instruction,
which takes 18 PLA cycles. The designers thought this instruction was highly parallel.

4. The PE (processor element) is a subcircuit of the Apex chip. The PE contains a 16 x 16
booth multiplier as well as a couple of adders. Three PEs are used in the APEX chip,
so we took three sets of measurements, each consisting of generating the first output
and measuring the parallelism of the 10 subsequcnt data points.

3

0'

5. The Vertexgen is also a subcircuit of the Apex I chip. It consists of a 32-bit pipelined
added with some associated registers and random logic. Three vertexgens are used
in the APEX chip, so we took three sets of measurements for each subcircuit. Like
the measurements of the chip, each set consisted of generating the first output and
measuring the parallelism of the 10 subsequent data points.

The other four circuits are instances of generators, programs that produce families of
circuits. For the generator instances, we averaged 20 sets of random inputs. Each data set
consisted of enough random inputs to initialize the circuit followed by a random input for
the parallelism measurement.

6. The Baugh-Wooley multiplier is a signed multiplier designed in static CMOS, and is
purely combinatorial in nature (Sys8 71.

7. The Booth multiplier is a generator developed as a group project in a VLSI design
class. Its design is based on the modified Booth multiplier using the sign generate
method described in [Ann86]. The multiplier has a static CMOS multiplier plane
and clocked pipeline registers between the multiplier plane and the final adder. An
additional carry resolve unit is placed at each row in the multiplier plane to compute
the carry generated by unnecessary low order bits. The final carry is then used as the
carryin to the final 18-bit adder. The final adder is a precharged Manchester carry
adder with carry bypass.

8. The shift register is a CMOS generator using two-phase non-overlapping clocks (Sys87l.
Its latch is a master-slave dynamic latch implemented with two clocked inverters.

9. The decoder is a static gate style CMOS generator parameterized by the number of
select lines [Sys87].

Table 1 shows the parallelism results using the queue metric. For each circuit we measured
the average parallelism and the maximum parallelism. We then computed the percentage of
parallelism by dividing the average parallelism by the number of nodes in the circuit. All of
the values in the table are shown to two significant digits. The numbers in parentheses are
standard deviations.

In general, the average parallelism decreases as the size of the circuit decreases. The

two exceptions to this are the IIR Digital Filter and the Shift Register. The Shift Register

exhibits more parallelism than many larger circuits, but was selected as a circuit which

should exhibit large parallelism. The 1Ir Filter has less parallelism than might be expected,

and in fact, has the lowest percentage of parallelism.
Even though the average parallelism generally decreases as the circuit size decreases, the

percent parallelism doesn't have such nice properties. The percentage of parallelism ranges

from 0.2% for the 1IR Digital Filter to 8.9% for the Decoder. It is interesting to note that

of the three biggest chips, only one has a percentage parallelism over 1, and this value is

4

Queue Parallelism (S.D.) Max Queue
Circuit Transistors Average Percent Length

Apex 1 61,660 390 (150) 1.2% (0.44) 1,800 (170)

fIR Digital Filter 27,360 31 0.22% 923

Quarter Horse 24,068 100 0.95% 610

PE 12,437 94 (18) 1.4% (0.26) 470 (90)

Vertexgen 7,495 41 (8.6) 0.55% (0.11) 220 (73)

8 x 8 Baugh-Wooley
Multiplier 2,162 36 (9.9) 3.3% (0.92) 98 (27)

8 x 8 Booth Multiplier 2,013 37 (7.0) 3.4% (0.64) 120 (20)

8-Stage, 16-Bit
Shift Register 1,536 91 (8.6) 8.7% (0.82) 260 (24)

4 to 16 Decoder 208 9.8 (3.9) 8.9% (3.6) 22 (10)

Table 1: Circuit Parallelism Using the Queue Metric

Average Parallelism (S.D.) Percent Parallelism (S.D.)
Circuit Event Queue Event Queue

Apex I 23 (2.1) 390 (150) 0.07% (0.006) 1.2% (0.44)

IIR Digital Filter 6.4 31 0.04% 0.22%

Quarter Horse 6.3 100 0.06% 0.95%

PE 8.0 (1.0) 94 (18) 0.12% (0.015) 1.4% (0.26)

Vertexgen 5.2 (1.0) 41 (8.6) 0.12% (0025) 0.99% (0.21)

8 x 8 Baugh-Wooley
Multiplier 2.8 (0.50) 36 (9.9) 0.26% (0.046) 3.3% (0.92)

8 x 8 Booth Multiplier 3.4 (0.31) 37 (7.0) 0.31% (0.031) 3.4% (0.64)

8-Stage, 16-Bit
Shift Register 25 (2.4) 91 (8.6) 2.4% (0.23) 8.7% (0.82)

4 to 16 Decoder 3.2 (0.47) 9.8 (3.9) 2.9% 0.091 8.9% (3.6)

Table 2: Comparing Parallelism using the Events and Queue Metrics

not much greater than 1. Also the chip with the parallelism over 1, the Apex I chip, is a

pipelined chip, so it was expected to hace more parallelism than the other chips.
Table 2 compares the parallelism of the event and queue metric. For each circuit we

compare the average parallelism and the percentage of parallelism. The numbers for each
metric are collected using the exact same input data for easy comparison. As expected, the
parallelism measured using the queue metric is always larger than that measured using the
event metric. However, the size of this difference is not constant. For these circuits, the

queue parallelism ranges from being 3.1 to 17 times greater than the event parallelism. This
is actually quite a large difference! Also the circuits with the largest percent parallelism
using the event metric have the largest percent parallelism using the queue metric, although
the difference. However, these two circuits were about an order of magnitude more parallel
than the next most parallel circuits using the event metric, but only more parallel by a factor

of 2.6 over the next most parallel circuits using the queue metric.
Thus, the parallelism is always greater using the queue metric, and it can be much

higher for certain circuits. However, from these example circuits it is not clear that there is

an obvious relationship between the two metrics. This is the topic for the next section.

4 Timestep Effects

When the timestep is increased, the parallelism using the event metric rises until it reaches
the parallelism of unit-delay simulation [BS88]. This ceiling effect is due to the data depen-
dencies in the circuit. Since in a unit-delay simulation, all of the events on the queue are
evaluated in the next timestep, the definitions of event metric and queue metric are identical
in this model. Thus, one would expect that if the timestep were increased, the parallelism
in the queue metric would also find a ceiling at the parallelism using the unit-delay model.

Thus, we consider the effects of changing the timestep using the queue metric. The
experiments were run using two circuits, a 16 x 16 instance of the Baugh-Wooley multiplier
and a 6 to 64 instance of the decoder described in the previous section. To test the effect
of timebase changes, we effectively modified RNL's internal timebase by changing the way
queuing delays were calculated. For example, to change RNL's timebase from its internal
timebase of O.lns to n(O.lns) we changed the delay Ad to:

0 if Adoid = 0
Ad = In if 0 < Adod < n

n(Adotd/n) otherwise

where "/" is integer divide. This insures that two dependent events do not occur in the same
timestep. We also used a unit-delay option for RNL to provide measurements for the two
metrics.

The results of these experiments are shown in Figures 1 and 2. We show the parallelism
of both the queue and event metric for easy comparison.

For the Baugh-Wooley multiplier in Figure 1, the two metrics show quite different char-
acters. For the event metric, the parallelism starts out quite small but grows rapidly until it
reached the threshold of the unit delay timestep. The queue metric measurements start out
quite large and increase only slightly. However, the surprise here is that the queue measure-
ments may be higher than the unit delay measurements! We do not completely understand
this effect, but it may be explained, at least partially, on the evaluation sequence imposed by
the different algorithms. For example, depending on the evaluation sequence, certain nodes
may oscillate more before settling to their final values. However, increasing the timestep
increases parallelism up to a point, at which time the increase is negligible.

The Decoder has a more expected performance (Figure 2). Here the parallelism for the
queue metric basically remains within that of the unit-delay computation for all timebases.
The parallelism for the event metric rises for the first few timebases and then levels out as
expected at the unit-delay level. Thus, in these two examples, the queue metric seems to
generally reflect the unit-delay metric, while the event metric is much more sensitive to the
timebase.

Another question related to the timebase is how different synchronization mechanisms af-
fect the parallelism measurements. All of the measurements here are based on a synchronous
model. Asynchronous computations allow different processors to be simultaneously execut-
ing events from different timesteps. This may increase the parallelism, at least for fine

granularities of timebase .

T

PR70

ISO T

so

1.0 1~.0 3.

Figure 1: The Effect of Tixnebase in the Baugh-Wooley Multiplier.

300

IS LO

Figure 2: The Effect of Timebase in the Decoder.

5 Conclusions

In this paper we have answered the question: Why do chip designer's perceive more paral-
lelism in their chips than has been found in the event metric. We have defined a new metric,
the queue metric, which is analogous to the designer's idea of parallelism. We have measured
nine chips using this metric and have compared the results to those found using the event
metric. We found that the queue metric always finds more parallelism than the event metric,
and can find up to a factor of 17 more parallelism.

Finally we have shown that by increasing the timebase the two parallelism found by
the two metrics converge to that found using the unit-delay timing model. There are some
fluctuations in the parallelism found using the unit-delay and the queue metric, but this
may be at least partially explained by the different execution sequences that the algorithms
exhibit. More experimentation needs to be done to insure that other effects are not present,
or if they are, to identify them.

References

[Ann86f Marco Annaratone. Digital CMOS Circuit Design. Kluwer Academic Publishers,
Norwell. Mass., 1986.

[BS871 Mary L. Bailey and Lawrence Snyder. Measurements of On-Chip Parallelism in
CMOS VLSI Circuits. Technical Report TR87-11-03, University of Washington
Department of Computer Science, 1987.

[BS88] Mary L. Bailey and Lawrence Syder. An Empirical Study of On-Chip Parallelism.
In the Proceedings of the 25th Design Automation Conference, pp. 160-165. IEEE,
June 1988.

[DH87] Tony D. DeRose and Thomas J. Holman. The Triangle: A Multiprocessor Ar-
chitecture for Fast Curve and Surface Generation. Technical Report TR87-08-07,
University of Washington Department of Computer Science, 1987.

[Fra85J Edward H. Frank. A Data-Driven Multiprocessor for Switch-Level Simulation of
VLSI Circuits. PhD Thesis, Carnegie-Mellon University, November 1985.

[HJK*85] S. Ho, B. Jinks, T. Knight, J. Schaad, L. Snyder, A. Tyagi, and C. Yang. The
Quarter Horse: A Case Study in Rapid Prototyping of a 32-bit Microprocessor
Chip. In Proceedings of the International Conference on Computer Design: VLSI
in Computers, pp. 261-266. IEEE, 1985.

[Lee85] Hyong Lee. A Variable Digital Filter Design in Sum CMOS. Master's Thesis,
University of Washington, 1985.

ii___10

S

[SB87] Larry Soule and Tom Blank. Statistics for Parallelism and Abstraction Level in
Digital Simulation. In Proceedings of the 24th Design Automation Conference,
pp. 588-591. IEEE, June, 1987.

[Sys87I Northwest Laboratory For Integrated Systems. VLSI Design Tools Reference
Manual Release 3.1. Technical Report TR87-02-01, University of Washington
Department of Computer Science, 1987.

(Ter83] Christopher J. Terman. Simulation Tools for Digital LSI Design. PhD Thesis,
Massachusetts Institute of Technology, September 1983.

x1

__ _ _ _ __ _ _(-- . -

